Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation
نویسندگان
چکیده
Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2-3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in rice and other crops, which may be achieved by overexpressing and raising independent transgenic plants carrying the genes that became up-regulated significantly and instantaneously.
منابع مشابه
Genome-Wide Identification and Comprehensive Expression Profiling of Ribosomal Protein Small Subunit (RPS) Genes and their Comparative Analysis with the Large Subunit (RPL) Genes in Rice
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein...
متن کاملExpression Profiling of Ribosomal Protein Gene Family in Dehydration Stress Responses and Characterization of Transgenic Rice Plants Overexpressing RPL23A for Water-Use Efficiency and Tolerance to Drought and Salt Stresses
Our previous findings on the screening of a large-pool of activation tagged rice plants grown under limited water conditions revealed the activation of Ribosomal Protein Large (RPL) subunit genes, RPL6 and RPL23A in two mutants that exhibited high water-use efficiency (WUE) with the genes getting activated by the integrated 4x enhancers (Moin et al., 2016a). In continuation of these findings, w...
متن کاملTranscriptional Downregulation of Rice rpL32 Gene under Abiotic Stress Is Associated with Removal of Transcription Factors within the Promoter Region
BACKGROUND The regulation of ribosomal proteins in plants under stress conditions has not been well studied. Although a few reports have shown stress-specific post-transcriptional and translational mechanisms involved in downregulation of ribosomal proteins yet stress-responsive transcriptional regulation of ribosomal proteins is largely unknown in plants. METHODOLOGY/PRINCIPAL FINDINGS In th...
متن کاملCharacterization of a cDNA encoding ribosomal protein S16 in rice.
Eukaryotic cytosolic ribosomes are composed of four RNA species and about 80 ribosomal proteins. The assembly of a functional ribosome requires the coordinate expression of genes for a11 constituent ribosomal proteins as well as rRNAs (Amaldi et al., 1989). Molecular dissection of animal ribosomal protein genes revealed that sequence elements embedded in the promoters and the 5‘ end of mature t...
متن کاملThe RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice
Mutations of ribosomal proteins (RPs) are known to cause developmental abnormalities in yeast, mammals, and dicotyledonous plants; however, their effects have not been studied in rice. Here, we identifiy a ribosomal biogenesis mutant, rice minute-like1 (rml1) that displays a minute phenotype as evidenced by retarded growth and defects in the vascular system. We determine that RML1 encodes a rib...
متن کامل